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Abstract

Probabilistic neural networks (PNNs) were utilized for the classifications of 102 active compounds from diverse medicinal plants with
anticancer activity against human rhinopharyngocele cell line KB. Molecular descriptors calculated from structure alone were used to represent
molecular structures. A subset of the calculated descriptors selected using factor correlation analysis and forward stepwise regression was
used to construct the prediction models. Linear discriminant analysis (LDA) was also utilized to construct the classification model to compare
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he results with those obtained by PNNs. The accuracy of the training set, the cross-validation set, and the test set given by PNN
ere 100, 92.3, 90.9% and 71.8, 92.3, 54.5%, respectively, which indicated that the results obtained by PNNs agree well with the ex
alues of these compounds and also revealed the superiority of PNNs over LDA approach for the classification of anticancer a
ompounds. The models built in this work would be of potential help in the design of novel and more potent anticancer agents.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Plants have been demonstrated to be a very viable
ource for the development of clinically relevant anticancer
ompounds. Cancer remains to be a major threat to the public
ealth. Many medicinal plants have remarkable cancer-
esistant effect and little side effect on patients. Therefore,
edicinal plants therapy is well suited for many of the
atients suffering from cancer. A lot of natural products have
een found to exhibit cytotoxic activity against human tumor
ell lines[1]. Plants that are known to have anticancer activity
re worth investigating. However, structural factors that are
equired for the anticancer activity on these compounds are
till unknown. One of the useful tools in rational drug design
s by the use of a quantitative structure–activity relationship
QSAR) analysis, especially when the structure and property
f the bioreceptor remain unclear. Recently, artificial neural

∗ Corresponding author. Tel.: +86 931 891 2578; fax: +86 931 891 2582.
E-mail addresses:huzd@lzu.edu.cn, snowmoun@21cn.com (Z.D. Hu).

networks have found a widespread use for classifica
tasks and function approximation in many fields of chem
and bioinformatics[2]. There are various types of neu
networks that can be used for these problems. Am
them, the probabilistic neural networks (PNNs) provid
very general and powerful classification paradigm w
there is adequate data of known classification. The
advantage of PNNs is that it can be effectively used to sp
data[3,4].

In the present work, a variety of 102 active compou
extracted from medicinal plants were further screened
preliminary in vitro testing against human rhinopharyn
cele cell line KB. The aim of the present paper is that
the first time to develop a prediction model for these
compounds by the use of multiple linear regression (M
and PNNs, and also to find the essential structural fea
for anticancer agents against human rhinopharyngocel
line KB. Linear discriminant analysis (LDA) was also us
to establish a classification model to compare the results
that obtained by PNNs.
731-7085/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2005.01.035
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2. Experimental

2.1. Data sets

All the anticancer activity values used in this work were
collected from handbook[1]. A complete list of the com-
pounds name and corresponding anticancer activity was listed
in Table 1. The molecular structures were shown inFig. 1.
The majority of the tested compounds are efficient antitumor
agents showing ED50 (the dose that inhibited 50% control
growth of KB cells) values from 0.000026 to 26.0�g/ml.
Compared with previous work[5–10], the compounds stud-
ied in our investigation were more diverse. It is difficult to
build a QSAR model simply by their activity value because
there is a very low similarity of the complex structure. So, the
compounds were divided into four classifications according
to their anticancer activity: higher, high, moderate and low
activity anticancer agent with ED50 values from 0.001 to 0.1,
0.1 to 1.0, 1.0 to 10.0 and over 10 which were represented
by ‘++++’, ‘+++’, ‘++’ and ‘+’, respectively. The data was
randomly divided into the training set, the cross-validation
set and the test set. The training set and cross-validation set
were used to adjust the parameters of PNNs. The test set was
used to evaluate the performance of the trained network.

2.2. Quantum chemical and topological descriptors

rep-
r uch
s shift
f tors,
s l in-
d over
o de-
s to
s

-
o . A
m ical
P em-
i ried
o in-
t g the
P adi-
e lude
i ole
m ical
d con-
n ssed
f -
t hing
o

2

qua-
t er of

the descriptors and minimize the information overlap in the
descriptors, the concept of non-redundant descriptors (NRD)
[13] was used. The linear correlation coefficients value of the
two descriptors should be less than 0.9.

Once descriptors were generated, a forward stepwise re-
gression method was used to develop the linear model of the
property of interest, which is shown as follows:

Y = b0 + b1X1 + b2X2 + · · · + bnXn (1)

where,Y is the property, that is, the dependent variable,
X1 −Xn represent the specific descriptor, whileb1 −bn repre-
sent the coefficients of those descriptors, andb0 the intercept
of this equation.

2.4. Theory of LDA

The basic theory of linear discriminant analyze is to clas-
sifies the dependent by dividing ann-dimensional descrip-
tor space into two regions that are separated by a hyperplane
which defined by a linear discriminant function[14], for more
than two groups, a set of discriminant functions are gener-
ated. The regions formed by the hyperplane correspond to
the classes to which individual compounds are predicted to
b
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To develop a QSAR, molecular structures are often
esented using molecular descriptors, which encode m
tructural information. In recent years there has been a
rom empirical parameters to purely calculated descrip
uch as quantum chemical descriptors and topologica
ices. The advantage of these calculated descriptors
ther empirical descriptors is the possibility to calculate
criptors solely from molecular structure and apply them
ets of structurally diverse compounds.

All molecules were drawn into Hyperchem[11] and pre
ptimized using MM+ molecular mechanics force field
ore precise optimization was done with semi-empir
M3 method in Hyperchem and thereafter quantum ch

cal descriptors were obtained. All calculations were car
ut at restricted Hartree Fock level with no configuration

eraction. The molecular structures were optimized usin
olak–Ribiere algorithm until the root mean square gr
nt was 0.001. The quantum chemical descriptors inc

nformation about binding and formation energies, dip
oment, and molecular orbital energy levels. Topolog
escriptors include valence and non-valence molecular
ectivity indices calculated from the hydrogen-suppre

ormula of the molecule by TOPIX[12], encoding informa
ion about the size, composition and the degree of branc
f a molecule.

.3. Theory of MLR

In MLR analysis, the descriptors in the regression e
ion must be independent variable. To reduce the numb
elong.

.5. Theory of PNNs

PNNs was developed by Specht and has been we
cribed in Refs.[3,4]. Here, we only give a brief descriptio
f its principle. The PNNs architecture is distinct from t
f a standard back-propagation neural network and pro
uperior performance in classification applications[3,4,15].
he PNNs operates by defining a probability density func
PDF) for each data class based on the training set dat
n optimized kernel width parameter (σ) [16–19]. The basic
rchitecture of PNNs is shown inFig. 2. It consists of an in
ut layer, a pattern layer, a summation layer and an o

ayer. At each neuron in the pattern layer, the dot produc
ance,d, is computed and then processed through a nonl
ransfer function as:

utput= exp−
(

(1 − d)

σ2

)
(2)

he summation layer sums the outputs from all hidden
ons of each respective data class. The products of the
ation layer are forwarded to the output layer.
The calculation programs implementing PNNs were w

en in M-file based on basis MATLAB[20] script for proba
ilistic neural networks. All computation was performed
Pentium IV computer with 256 MB RAM working und
S Windows XP.
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Table 1
Studied compounds and the data used in this work

No. Name ELOMO Chi3 Chi4 NrBR NrRI DiEM Pola ED50 log(1/ED50)

1 Acanthamolide −0.58 8.89 6.73 10 2 4.10 43 2.2000 −0.34
2 Acanthoglabrolide −0.48 10.44 7.47 12 2 4.18 51 3.1000 −0.49
3 Acantholide −0.48 8.89 6.73 10 2 4.10 43 2.2000 −0.34
4 Acanthospermolide −0.51 9.13 7.04 10 2 3.93 45 0.5400 0.27
5 3�-Acetoxynorerthrosuamine −0.28 13.30 11.27 12 3 5.39 72 0.0030 2.52
6 Acetylglaucarubinone −0.55 16.64 14.43 17 5 4.91 92 0.0010 3.00
7 Ailanthinone −0.38 15.40 13.17 16 5 4.52 84 0.0010 3.00
8 Allamardicin −0.33 9.26 8.76 10 4 3.98 44 10.0000 −1.00
9 Allamandin −0.36 9.42 8.98 10 4 3.90 45 2.1000 −0.32

10 Allamdin −0.45 8.36 7.26 8 3 3.96 38 10.0000 −1.00
11 Amaralin −0.30 8.38 7.22 10 4 3.34 39 4.9000 −0.69
12 Arnebin −1.08 8.72 7.66 11 2 4.61 44 25.0000 −1.40
13 Aromaticin −0.33 7.77 6.23 8 3 3.2 36 2.0000 −0.30
14 Autumnolide −0.03 9.03 7.86 11 4 3.29 44 3.1000 −0.49
15 Baccharin −0.26 16.99 13.62 15 7 5.12 84 0.0001 4.00
16 Baileyin −0.30 7.07 5.77 8 3 3.50 30 16.0000 −1.20
17 Baileyolin −0.61 13.07 11.56 11 5 4.77 67 0.0280 1.55
18 Bersenogenin −0.52 13.4 11.83 10 5 4.67 70 0.0046 2.34
19 Bruceantin −0.03 16.8 14.46 18 5 4.94 93 0.0010 3.00
20 Bruceantinol −0.76 17.91 15.73 19 5 5.36 100 0.0010 3.00
21 Chaparrinone −0.72 12.78 11.52 13 5 3.61 70 0.1420 0.85
22 Chelerythrine methanolate −0.77 11.72 10.81 12 5 4.52 57 4.0000 −0.60
23 Chrysin −1.07 6.93 6.42 7 3 3.94 31 13.0000 −1.11
24 Cissampareine −0.47 17.96 15.73 17 7 5.49 88 1.1000 −0.04
25 Cnicin −0.18 9.61 7.07 10 2 4.55 45 3.4000 −0.53
26 Costunolide −0.07 5.94 4.56 6 2 3.36 26 0.2600 0.59
27 Cryptopleurine −0.58 11.47 10.07 11 5 4.43 55 2.6e−5 −4.59
28 Cucurbitacin B 0.050 16.56 14.06 16 4 5.54 91 0.0050 2.30
29 Cucurbitacin D −0.56 15.68 12.89 15 4 5.19 86 0.0050 2.30
30 Cucurbitacin E −0.51 16.56 14.06 16 4 5.54 91 0.0100 2.00
31 Cucurbitacin I −0.66 15.68 12.89 15 4 5.19 86 0.0050 2.30
32 Cucurbitacin L 0.01 15.68 12.89 15 4 5.19 86 0.0100 2.00
33 Cucurbitacin P 0.41 15.68 12.89 15 4 5.19 86 0.5400 0.27
34 Cucurbitacin Q −0.09 16.56 14.06 16 4 5.54 91 0.0320 1.49
35 Cymarin −0.24 17.14 14.59 14 6 5.74 85 1.0000 0.00
36 Damsin −0.12 7.93 6.37 8 3 3.02 38 0.3200 0.49
37 Deacetyleupaserrin −0.38 8.82 7.60 10 2 4.32 43 0.2900 0.54
38 Demethyldeoxypodophyllotoxin −0.18 11.63 10.29 12 5 4.31 52 0.0012 2.92
39 Deoxypodophyllotoxin −0.23 11.83 10.74 12 5 4.43 54 20.0000 −1.30
40 3-Desmethylcolchicine −0.60 10.11 8.99 11 3 4.27 57 0.0240 1.62
41 Dihydroacanthospermal −0.23 10.76 7.53 12 2 4.23 53 2.6000 −0.42
42 Elephantin −0.92 10.01 8.73 12 4 4.27 45 0.2800 0.55
43 Elephantopin −0.77 10.24 8.06 12 4 3.99 45 0.2800 0.55
44 3-Epiberscillogenin −0.91 13.07 11.56 11 5 4.77 67 0.6200 0.21
45 10-Epieupatoroxin −0.36 12.31 10.12 13 5 4.19 61 2.6000 −0.42
46 Epitulipindide −0.19 6.85 5.83 8 2 3.64 33 2.1000 −0.32
47 Epitulipinolide diepoxide −0.22 8.82 6.97 10 4 3.62 38 0.3400 0.47
48 Eremantholide A −0.56 11.36 9.28 11 4 3.71 57 2.0000 −0.30
49 Eupachlorin −0.19 11.54 9.42 12 3 4.16 60 0.2100 0.68
50 Eupachlorin acetate −0.30 12.15 9.94 13 3 4.47 64 0.1800 0.74
51 Eupachloroxin −0.31 12.62 10.21 13 4 4.19 64 0.2100 0.68
52 Eupacunin −0.33 10.13 7.50 12 2 4.65 49 2.1000 −0.32
53 Eupacunolin −0.51 10.45 7.84 12 2 4.66 51 3.7000 −0.57
54 Eupacunoxin −0.08 11.13 8.12 13 3 4.7 51 2.1000 −0.32
55 Eupafolin −1.12 8.95 7.57 10 3 4.51 42 18.0000 −1.26
56 Euparotin −0.21 11.23 9.32 12 4 4.16 57 0.2100 0.68
57 Euparotin acetate −0.30 11.83 9.85 13 4 4.48 61 0.2100 0.68
58 Eupaserrin −0.22 9.41 7.94 11 2 4.8 46 0.2300 0.64
59 Eupatilin −1.17 9.54 8.39 10 3 4.75 46 45.0000 −1.65
60 Eupatin −0.90 10.24 8.62 11 3 4.71 50 4.6000 −0.66
61 Eupatocunin 0.04 10.30 7.51 12 2 4.64 50 0.1100 0.96
62 Eupatocunoxin 0.06 11.24 8.36 13 3 4.65 52 1.7000 −0.23
63 Eupatorin −1.18 9.55 8.32 10 3 4.74 46 4.2000 −0.62
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Table 1 (Continued)

No. Name ELOMO Chi3 Chi4 NrBR NrRI DiEM Pola ED50 log(1/ED50)

64 Eupatoroxin −0.19 12.31 10.12 13 5 4.19 61 2.8000 −0.45
65 Eupatundin −0.17 11.71 9.59 13 4 4.21 58 0.3900 0.41
66 Fastigilin A −0.24 11.06 8.30 12 3 3.90 55 3.9000 −0.59
67 Fastigilin B −0.20 10.35 8.60 12 3 4.00 53 14.0000 −1.15
68 Fastigilin C −0.32 10.35 8.6 12 3 4.00 53 1.0000 0.00
69 Gaillardin −0.28 8.29 7.32 10 3 3.96 41 0.8000 0.10
70 Genistein −0.82 7.50 6.62 8 3 4.18 34 7.4000 −0.87
71 Glabratolide −0.33 8.31 6.19 9 2 3.99 39 2.3000 −0.36
72 Glaucarubinone −0.23 16.01 13.18 16 5 4.58 87 0.0250 1.60
73 Glaziovine −0.69 9.24 8.02 9 4 3.73 44 2.6000 −0.42
74 Heliotrine 0.97 8.60 6.31 8 2 4.36 37 15.0000 −1.18
75 9-Hydroxyglabratolide −0.28 8.92 6.63 10 2 3.95 43 2.0000 −0.30
76 Isochamanetin −0.56 10.35 8.93 10 4 4.98 47 5.3000 −0.72
77 Isocucurbitacin D 0.12 15.68 12.89 15 4 5.19 86 0.0240 1.62
78 Isopicropodophyllone −0.99 12.4 11.17 13 5 4.44 58 3.2000 −0.51
79 Jacaranone −0.85 4.02 2.65 3 1 3.40 16 2.1000 −0.32
80 Jatrophone −0.18 9.03 7.2 9 3 3.58 43 0.1700 0.77
81 Lipiferolide −0.10 7.85 6.44 9 3 3.64 36 0.1600 0.80
82 Nobiletin −1.03 10.88 9.7 11 3 4.82 56 3.0000 −0.48
83 Odoratin −0.37 8.26 6.57 9 3 3.37 39 4.0000 −0.60
84 Pleniradin −0.16 7.68 6.79 9 3 3.40 37 14.0000 −1.15
85 Provincialin −0.56 12.24 9.74 13 2 5.62 60 3.5000 −0.54
86 Psorospermin −0.67 10.55 8.89 11 5 4.22 48 0.1000 1.00
87 Quassimarin −0.74 16.67 14.39 17 5 4.90 92 0.0100 2.00
88 Radiatin −0.28 10.58 7.94 12 3 3.68 53 1.6000 −0.20
89 Simalikalactone D −0.78 15.43 13.14 16 5 4.52 84 0.0010 3.00
90 Taxodione −1.53 9.10 8.65 10 3 3.84 49 3.0000 −0.48
91 Taxodone −1.18 9.10 8.65 10 3 3.84 49 0.6000 0.22
92 Tripdiolide −0.76 13.03 12.43 14 7 4.16 68 0.0042 2.38
93 Triptolide −0.47 12.75 11.76 13 7 4.15 65 0.0017 2.77
94 Triptonide −0.61 12.75 11.76 13 7 4.15 65 0.0001 4.00
95 Tulipalin −0.21 2.29 1.33 2 1 1.09 5 16.0000 −1.20
96 Tulipinolide −0.04 7.00 5.78 8 2 3.59 34 0.4600 0.34
97 Vernodalin −0.60 10.58 8.24 11 3 4.26 51 1.8000 −0.26
98 Vernolepin −0.33 8.46 7.17 9 3 3.33 41 1.7000 −0.23
99 Vernolide 0.01 10.35 7.99 11 4 3.97 50 2.0000 −0.30

100 Vernomenin −0.62 8.54 7.23 9 3 3.43 41 20.0000 −1.30
101 Vernomygdin −0.22 10.3 7.83 11 4 4.02 49 1.5000 −0.18
102 Xerantholide −0.40 7.57 6.04 9 3 3.41 34 1.5030 −0.18

Definition of the descriptors were given inTables 2 and 3.

3. Results and discussion

3.1. Results of MLR

More than 40 non-empirical molecular descriptors, which
encode the essential structural features of the molecules, were
calculated for each compound. The full list of the descrip-
tors calculated is given inTable 2. Forward stepwise re-
gression routine was used to develop the linear model for
the prediction of log(1/ED50) using calculated structural de-
scriptors. The best linear model contains seven molecular
descriptors. Of them, one is quantum chemical, one is elec-
trochemical and five are topological descriptors. The best
seven-descriptor correlation model was shown in detail in
Table 3. This model produced a correlation coefficient of
0.773 for the compounds.

FromTable 3, it can be seen that there is no simple linear
correlation between the anticancer of medicinal plants and the
input parameters. Therefore, LDA and PNNs were applied to

classify the anticancer values based on the same subset of
descriptors. For the purposes of modeling, a value of 1, 2, 3
and 4 was assigned to compounds with low, moderate, high,
higher anticancer activities, respectively.

3.2. PNNs structure optimization

The most important parameter that needs to be determined
to obtain an optimal PNNs is the spread parameter (σ) of the
random variables. The selection of this value is crucial be-
cause it determines the shape of the Gaussian function. A
large radius possesses a smooth shape and has the advantage
of interpolation, and a small radius leads to a sharp shape
and reduces the overlap between adjacent samples[21]. But
too small a spread cannot generalize well, because unknown
samples only lie in the region that Gaussian function enclos-
ing can be generalized. To optimize the radius, 13 samples
were used as a cross-validation set. A trial and error method
was used to find the best radius. The absolute error (AE) was
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Fig. 1. Structures of 102 active compounds.
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Fig. 1. (Continued).
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Fig. 1. (Continued).
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Fig. 1. (Continued).

used as the error function, and it is computed according to
the following:

AE = sum(abs(di − oi)) (3)

wheredi is the desired output in the cross-validation set and
oi the actual output.

To obtain the optimal radius, the neural networks with
different radii were trained, the spread varying from 1.00 to
1.45. The AE was calculated on different radii, according to
the generalization ability on the cross-validation set in order
to determine the optimal radius. The curve of AE versus the

radius is shown inFig. 3. FromFig. 3, the optimal radius was
found as 1.30.

3.3. Results of PNNs and LDA

From the above discussion, the radius of hidden layer
nodes was fixed to 1.30. The predicted results of the opti-
mal neural network were shown inTable 4. The number of
compounds which were misclassified in the training set, the
cross-validation set, and the test set are 0, 1, and 1, respec-
tively, and the corresponding accuracy are 100, 92.31, and
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Fig. 2. Structure of probabilistic neural networks.

Table 2
Full list of the descriptors calculated in this study

Descriptor Descriptor

Total energy Number of branches
Binding energy Number of rings
Isolated atomic energy Wiener index
Electronic energy Information wiener
Core-core interaction Distance equality mean
Heat of formation Distance equality total
Dipole Polarity
Surface area Wiener index on distance code
Volume Modified randic index
Hydration energy First zagreb index
log p Second zagreb index
Refractivity Balanba
Polarizability Dimension index
Molecular weight Number of C atoms
Homo energy level Number of O atoms
Lumo energy level Number of N atoms
Chi0 index Number of single bonds
Chi1 index Number of double bonds
Chi2 index Number of triple bonds
Chi3 index Number of aromatic bonds
Chi4 index

90.91%. InTable 4, we can remark that the misclassifica-
tion of nos. 84 and 96 are relatively important. These two
predicted results are not completely agreeing with the exper-
iment results, but they lie on the borders (nos.: 84 (+/++); 96
(+++/++)).

Fig. 3. The spread vs. AE error on cross-validation set.

After the establishment of PNNs model, LDA was used to
build another classification model to compare the results with
that obtained by PNNs. LDA was performed using the SPSS
statistical software[22]. In this work, the prior probabilities
were computed from group size. The predicted accuracy for
the training set, the cross-validation set, and the test set was
71.8, 92.3, and 54.5%, respectively. By comparison of the
results obtained by PNNs and LDA, it could be seen that the
results obtained by PNNs were better than that obtained by
LDA.

3.4. Discussion of the descriptors

By interpreting of the descriptors used in this work, it
is possible to gain some insight into factors that are likely
to govern the anticancer activity of the active compounds
in medicinal plants. (1) The standardized regression coef-
ficients reveal the significance of an individual descriptor
presented in the regression model. Obviously, inTable 3,
the effect of number of rings (NoRI) on the activity of the
anticancer is more significant than that of the other descrip-
tors. FromTable 1, it can be seen that the compounds which
have 6 and 7 rings are all the highest anticancer agents, the
ones which have 5 rings are almost the highest anticancer
agents. (2) The drugs take effect on organism by the molecu-
l only

Table 3
MLR results on the correlation between input parameters and the activity va

Chemical meaning Descriptor Coefficient

Intercept Constant −1.311
Lumo energy level ELOMO 0.333
Chi3 index Chi3 −0.844
Chi4 index Chi4 −0.577
Number of branches NrBR −4.228E−02
Number of rings NrRI 0.753
Distance equality mean DiEM 0.328
Polarity Pola 0.232
R (correlation coefficient) 0.773
F-value 196.65
ar interactions between them. These interactions comm

lues, log(1/ED50)

S.E. Standardized coefficients T-value

0.722 −1.815
0.280 0.093 1.190
0.302 −2.017 −2.798
0.265 −1.243 −2.175
0.093 −.093 −0.453
0.205 0.760 3.683
0.306 0.174 1.074
0.049 3.356 4.706
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Table 4
Predicting results of training set, cross-validation set and test set by PNNs model

No. Class Predicted No. Class Predicted No. Class Predicted

1 ++ ++ 35 ++++ ++++ 69a ++ ++
2 ++ ++ 36b +++ +++ 70 ++ ++
3 ++ ++ 37 +++ +++ 71 ++ ++

4b +++ +++ 38 ++++ ++++ 72 ++++ ++++
5a ++++ ++++ 39 + + 73 ++ ++
6 ++++ ++++ 40 ++++ ++++ 74 + +
7 ++++ ++++ 41a ++ ++ 75 ++ ++
8 + + 42 +++ +++ 76b ++ ++
9 ++ ++ 43 +++ +++ 77 ++++ ++++

10 + + 44b +++ +++ 78a ++ ++
11 ++ ++ 45 ++ ++ 79 ++ ++

12b + + 46 ++ ++ 80 +++ +++
13 ++ ++ 47 +++ +++ 81 +++ +++

14a ++ ++ 48 ++ ++ 82 ++ ++
15 ++++ ++++ 49 +++ +++ 83 ++ ++
16 + + 50a +++ +++ 84b + ++
17 ++++ ++++ 51 +++ +++ 85 ++ ++
18 ++++ ++++ 52b ++ ++ 86 ++++ ++++
19 ++++ ++++ 53 ++ ++ 87a ++++ ++++

20b ++++ ++++ 54 ++ ++ 88 ++ ++
21 +++ +++ 55 + + 89 ++++ ++++
22 ++ ++ 56 +++ +++ 90 ++ ++

23a + + 57 +++ +++ 91 +++ +++
24 ++ ++ 58 +++ +++ 92b ++++ ++++
25 ++ ++ 59a + + 93 ++++ ++++
26 +++ +++ 60b ++ ++ 94 ++++ ++++
27 ++++ ++++ 61 +++ +++ 95 + +

28b ++++ ++++ 62 ++ ++ 96a +++ ++
29 ++++ ++++ 63 ++ ++ 97 ++ ++
30 ++++ ++++ 64 ++ ++ 98 ++ ++
31 ++++ ++++ 65 +++ +++ 99 ++ ++

32a ++++ ++++ 66 ++ ++ 100b + +
33 +++ +++ 67 + + 101 ++ ++
34 ++++ ++++ 68b +++ +++ 102 ++ ++
a Test set.
b Cross-validation set.

include the bond of charge transfer, H-bond and dispersion
interaction[23]. ELUMO is the energy of the lowest unoc-
cupied orbital and describes the electrophilicity ability of a
molecule and also the ability of a molecule to accept elec-
trons. According to frontier molecule orbital (FMO) theory,
frontier orbital energies control chemical reactivity.ELUMO
can be considered as a measure of a compound’s suscepti-
bility to nucleophilic attack[24]. The positive coefficient of
ELUMO in MLR model shows that increasing the energy of
LUMO causes the anticancer activity increase in this work.
(3) The positive coefficient of polarity (Pola) also shows
that increasing the polarity of molecule results in the anti-
cancer activity increases, it is probably due to the fact that
the molecule with high polarity can easily accommodate its
charge when it reacts to other molecule, consequently, results
in the high anticancer activity. (4) Meanwhile, the negative re-
lationship between anticancer activity and Chi3 index (Chi3),
Chi4 index (Chi4) and number of branches (NoBR) reveals
that increasing these parameters of molecule decreases the
activity.

4. Conclusion

A multiple linear regression study was conducted on
102 diverse active compounds extracted from medicinal
plants. More than 40 descriptors were calculated for each
molecule. The best set of calculated descriptors was selected
by factor correlation analysis and forward stepwise re-
gression. Probabilistic neural networks and linear discrim-
inant analysis were then applied to classify the anticancer
values based on the same subset of descriptors. The op-
timization of PNNs structure is easier and faster com-
pared with back-propagation (BP) neural networks, because
there is only one adjustable parameter. The predictive
results of PNNs are consistent with the experimental data
and better than that obtained by LDA. Some conclusions
were drawn to give insight into the local molecular fea-
tures that determine the anticancer activity of these com-
pounds. Therefore the model developed in this paper is a
good and simple approach for predicting the expected an-
ticancer classification of molecules and is very helpful to
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search and screen potent anticancer drug from medicinal
plants.
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