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Abstract

Probabilistic neural networks (PNNs) were utilized for the classifications of 102 active compounds from diverse medicinal plants with
anticancer activity against human rhinopharyngocele cell line KB. Molecular descriptors calculated from structure alone were used to represent
molecular structures. A subset of the calculated descriptors selected using factor correlation analysis and forward stepwise regression was
used to construct the prediction models. Linear discriminant analysis (LDA) was also utilized to construct the classification model to compare
the results with those obtained by PNNs. The accuracy of the training set, the cross-validation set, and the test set given by PNNs and LDA
were 100, 92.3,90.9% and 71.8, 92.3, 54.5%, respectively, which indicated that the results obtained by PNNs agree well with the experimental
values of these compounds and also revealed the superiority of PNNs over LDA approach for the classification of anticancer activities of
compounds. The models built in this work would be of potential help in the design of novel and more potent anticancer agents.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction networks have found a widespread use for classification
tasks and function approximation in many fields of chemistry
Plants have been demonstrated to be a very viableand bioinformaticg2]. There are various types of neural
source for the development of clinically relevant anticancer networks that can be used for these problems. Among
compounds. Cancer remains to be a major threat to the publicthem, the probabilistic neural networks (PNNs) provide a
health. Many medicinal plants have remarkable cancer-very general and powerful classification paradigm when
resistant effect and little side effect on patients. Therefore, there is adequate data of known classification. The main
medicinal plants therapy is well suited for many of the advantage of PNNs s thatit can be effectively used to sparse
patients suffering from cancer. A lot of natural products have data[3,4].
been found to exhibit cytotoxic activity against human tumor  In the present work, a variety of 102 active compounds
celllines[1]. Plants that are known to have anticancer activity extracted from medicinal plants were further screened for
are worth investigating. However, structural factors that are preliminary in vitro testing against human rhinopharyngo-
required for the anticancer activity on these compounds arecele cell line KB. The aim of the present paper is that for
still unknown. One of the useful tools in rational drug design the first time to develop a prediction model for these 102
is by the use of a quantitative structure—activity relationship compounds by the use of multiple linear regression (MLR)
(QSAR) analysis, especially when the structure and property and PNNs, and also to find the essential structural features
of the bioreceptor remain unclear. Recently, artificial neural for anticancer agents against human rhinopharyngocele cell
line KB. Linear discriminant analysis (LDA) was also used
mpondmg author. Tel.: +86 931 891 2578: fax: +86 931 891 2582. to establish a classification model to compare the results with
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2. Experimental the descriptors and minimize the information overlap in the
descriptors, the concept of non-redundant descriptors (NRD)
2.1. Data sets [13]was used. The linear correlation coefficients value of the

two descriptors should be less than 0.9.

All the anticancer activity values used in this work were Once descriptors were generated, a forward stepwise re-
collected from handbooKkl]. A complete list of the com-  gression method was used to develop the linear model of the
pounds name and corresponding anticancer activity was listedproperty of interest, which is shown as follows:
in Table 1. The molecular structures were showrfFig. 1
The majority pf the tested compound; are efficient antitumor y _ bo+ b1X1 + bpXo + - -+ b, X, 1)
agents showing E£ (the dose that inhibited 50% control
growth of KB cells) values from 0.000026 to 2q.@/ml.
Compared with previous worfs—10], the compounds stud-
ied in our investigation were more diverse. It is difficult to
build a QSAR model simply by their activity value because
there is a very low similarity of the complex structure. So, the
compounds were divided into four classifications according
to their anticancer activity: higher, high, moderate and low
activity anticancer agent with Ejgvalues from 0.001t0 0.1,
0.1t0 1.0, 1.0 to 10.0 and over 10 which were represented

by ‘++++', ‘+++' ‘++" and ‘+’, respectively. The data was . o i ) )
randomly divided into the training set, the cross-validation sifies the dependent by dividing ardimensional descrip-

set and the test set. The training set and cross-validation sefOr space Into two regions that are separated by a hyperplane

were used to adjust the parameters of PNNs. The test set wa¥/hich defined by alinear discriminant functiied], for more

used to evaluate the performance of the trained network. 12N tWo groups, a set of discriminant functions are gener-
ated. The regions formed by the hyperplane correspond to

2.2. Quantum chemical and topological descriptors the classes to which individual compounds are predicted to

belong.
To develop a QSAR, molecular structures are often rep-

resented using molecular descriptors, which encode much
structural information. In recent years there has been a shift2 5. Theory of PNNs
from empirical parameters to purely calculated descriptors,

such as quantum chemical descriptors and topological in-  PNNs was developed by Specht and has been well de-
dices. The advantage of these calculated descriptors ovekscribed in Refs[3,4]. Here, we only give a brief description
other empirical descriptors is the possibility to calculate de- of its principle. The PNNs architecture is distinct from that
scriptors solely from molecular structure and apply them to of a standard back-propagation neural network and provides
sets of structurally diverse compounds. superior performance in classification applicatif®ig,15]

All molecules were drawn into Hyperchefhl] and pre-  The PNNs operates by defining a probability density function
optimized using MM+ molecular mechanics force field. A (PDF) for each data class based on the training set data and
more precise optimization was done with semi-empirical an optimized kernel width parameter) [16—19] The basic
PM3 method in Hyperchem and thereafter quantum chem- architecture of PNNs is shown Fig. 2 It consists of an in-
ical descriptors were obtained. All calculations were carried put |ayer' a pattern |aye|” a summation |ayer and an Output
out at restricted Hartree Fock level with no configuration in- |ayer. At each neuron in the pattern layer, the dot product dis-

teraction. The molecular structures were optimized using the tanced, is computed and then processed through a nonlinear
Polak—Ribiere algorithm until the root mean square gradi- transfer function as:

ent was 0.001. The quantum chemical descriptors include
information about binding and formation energies, dipole ((1—d)>

where, Y is the property, that is, the dependent variable,
X1 — Xnrepresent the specific descriptor, whije— by, repre-
sent the coefficients of those descriptors, bgithe intercept

of this equation.

2.4. Theory of LDA

The basic theory of linear discriminant analyze is to clas-

moment, and molecular orbital energy levels. Topological OUtPut= exp— 2 )
descriptors include valence and non-valence molecular con-
nectivity indices calculated from the hydrogen-suppressed
formula of the molecule by TOPIXL2], encoding informa-

tion about the size, composition and the degree of branching

of a molecule.

o

The summation layer sums the outputs from all hidden neu-
rons of each respective data class. The products of the sum-
mation layer are forwarded to the output layer.
The calculation programs implementing PNNs were writ-
2.3. Theory of MLR ten in M-file based on basis MATLARO] script for proba-
bilistic neural networks. All computation was performed on
In MLR analysis, the descriptors in the regression equa- a Pentium IV computer with 256 MB RAM working under
tion must be independent variable. To reduce the number of MS Windows XP.
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Table 1
Studied compounds and the data used in this work
No. Name ELomo Chi3 Chi4 NrBR NrRI DIiEM Pola ElRo log(1/EDsp)
1 Acanthamolide —0.58 889 673 10 2 410 43 22000 -0.34
2 Acanthoglabrolide —0.48 1044 747 12 2 418 51 31000 —-0.49
3 Acantholide —0.48 889 673 10 2 410 43 22000 -0.34
4 Acanthospermolide —0.51 913 704 10 2 393 45 05400 027
5 3B-Acetoxynorerthrosuamine —0.28 1330 1127 12 3 539 72 00030 252
6 Acetylglaucarubinone —0.55 1664 1443 17 5 491 92 00010 300
7 Ailanthinone —0.38 1540 1317 16 5 452 84 00010 300
8 Allamardicin —0.33 926 876 10 4 398 44 100000  —1.00
9 Allamandin —0.36 942 898 10 4 390 45 21000 -0.32
10 Allamdin —0.45 836 7.26 8 3 396 38 100000  —1.00
11 Amaralin —0.30 838 722 10 4 334 39 49000 —-0.69
12 Arnebin —1.08 872 7.66 11 2 461 44 250000 —1.40
13 Aromaticin —-0.33 777 623 8 3 32 36 20000 —-0.30
14 Autumnolide —0.03 903 7.86 11 4 329 44 31000 —-0.49
15 Baccharin —0.26 1699 1362 15 7 512 84 00001 400
16 Baileyin —0.30 7.07 577 8 3 350 30 160000 —1.20
17 Baileyolin —-0.61 1307 1156 11 5 477 67 00280 155
18 Bersenogenin —-0.52 134 1183 10 5 467 70 00046 234
19 Bruceantin —0.03 168 14.46 18 5 494 93 00010 300
20 Bruceantinol —0.76 1791 1573 19 5 536 100 00010 300
21 Chaparrinone —-0.72 1278 1152 13 5 361 70 01420 Q085
22 Chelerythrine methanolate -0.77 1172 1081 12 5 452 57 40000 —0.60
23 Chrysin -1.07 693 642 7 3 394 31 130000 -111
24 Cissampareine —0.47 1796 1573 17 7 549 88 11000 —0.04
25 Chnicin —-0.18 961 7.07 10 2 455 45 34000 —-0.53
26 Costunolide —0.07 594 456 6 2 336 26 02600 059
27 Cryptopleurine —0.58 1147 1007 11 5 443 55 26e-5 —4.59
28 Cucurbitacin B M50 1656 1406 16 4 554 91 00050 230
29 Cucurbitacin D —0.56 1568 1289 15 4 519 86 00050 230
30 Cucurbitacin E —0.51 1656 1406 16 4 554 91 00100 200
31 Cucurbitacin | —0.66 1568 1289 15 4 519 86 00050 230
32 Cucurbitacin L m1 1568 1289 15 4 519 86 00100 200
33 Cucurbitacin P a1 1568 1289 15 4 519 86 05400 027
34 Cucurbitacin Q —0.09 1656 1406 16 4 554 91 00320 149
35 Cymarin -0.24 1714 1459 14 6 574 85 10000 000
36 Damsin -0.12 793 637 8 3 302 38 03200 049
37 Deacetyleupaserrin —0.38 882 7.60 10 2 432 43 02900 054
38 Demethyldeoxypodophyllotoxin  —0.18 1163 1029 12 5 431 52 00012 292
39 Deoxypodophyllotoxin -0.23 1183 1074 12 5 443 54 200000 —1.30
40 3-Desmethylcolchicine —0.60 1011 899 11 3 427 57 00240 162
41 Dihydroacanthospermal -0.23 1076 753 12 2 423 53 26000 —-0.42
42 Elephantin —-0.92 1001 873 12 4 427 45 02800 055
43 Elephantopin -0.77 1024 806 12 4 399 45 02800 055
44 3-Epiberscillogenin -0.91 1307 1156 11 5 477 67 06200 021
45 10-Epieupatoroxin —0.36 1231 1012 13 5 419 61 26000 —-0.42
46 Epitulipindide -0.19 685 583 8 2 364 33 21000 -0.32
47 Epitulipinolide diepoxide -0.22 882 697 10 4 362 38 03400 047
48 Eremantholide A —0.56 1136 928 11 4 371 57 20000 -0.30
49 Eupachlorin -0.19 1154 942 12 3 416 60 02100 068
50 Eupachlorin acetate —0.30 1215 994 13 3 447 64 01800 Q74
51 Eupachloroxin -0.31 1262 1021 13 4 419 64 02100 068
52 Eupacunin —-0.33 1013 750 12 2 465 49 21000 -0.32
53 Eupacunolin -0.51 1045 784 12 2 466 51 37000 -0.57
54 Eupacunoxin —0.08 1113 812 13 3 47 51 21000 -0.32
55 Eupafolin -112 895 757 10 3 451 42 180000 -1.26
56 Euparotin -0.21 1123 932 12 4 416 57 02100 068
57 Euparotin acetate —-0.30 1183 985 13 4 448 61 02100 068
58 Eupaserrin —-0.22 941 794 11 2 48 46 Q2300 Q064
59 Eupatilin -1.17 954 839 10 3 475 46 450000 —-1.65
60 Eupatin —0.90 1024 862 11 3 471 50 46000 —0.66
61 Eupatocunin 04 1030 751 12 2 464 50 01100 096
62 Eupatocunoxin 06 1124 836 13 3 465 52 17000 -0.23
63 Eupatorin -1.18 955 832 10 3 474 46 42000 —-0.62
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Table 1 Continued

No. Name ELomo Chi3 Chi4 NrBR NrRI DIiEM Pola El3o log(1/EDsp)
64 Eupatoroxin -0.19 1231 1012 13 5 419 61 28000 —0.45
65 Eupatundin -017 1171 959 13 4 421 58 03900 041
66 Fastigilin A —-0.24 1106 830 12 3 390 55 39000 —0.59
67 Fastigilin B —-0.20 1035 860 12 3 400 53 140000 -1.15
68 Fastigilin C -0.32 1035 86 12 3 400 53 10000 000
69 Gaillardin —-0.28 829 732 10 3 396 41 08000 010
70 Genistein -0.82 750 662 8 3 418 34 74000 -0.87
71 Glabratolide -0.33 831 619 9 2 399 39 23000 —0.36
72 Glaucarubinone -0.23 1601 1318 16 5 458 87 00250 160
73 Glaziovine —0.69 924 802 9 4 373 44 26000 —0.42
74 Heliotrine 097 860 631 8 2 436 37 150000 -1.18
75 9-Hydroxyglabratolide ~ —0.28 892 663 10 2 395 43 20000 —0.30
76 Isochamanetin —0.56 1035 893 10 4 498 a7 53000 —-0.72
77 Isocucurbitacin D a2 1568 1289 15 4 519 86 00240 162
78 Isopicropodophyllone —0.99 124 1117 13 5 444 58 32000 —0.51
79 Jacaranone —-0.85 402 265 3 1 340 16 21000 -0.32
80 Jatrophone -0.18 903 72 9 3 358 43 01700 Q77
81 Lipiferolide —-0.10 785 644 9 3 364 36 01600 080
82 Nobiletin -1.03 1088 a7 11 3 482 56 30000 —-0.48
83 Odoratin -0.37 826 657 9 3 337 39 40000 —0.60
84 Pleniradin -0.16 768 679 9 3 340 37 140000 -1.15
85 Provincialin —0.56 1224 974 13 2 562 60 35000 —0.54
86 Psorospermin -0.67 1055 889 11 5 422 48 01000 100
87 Quassimarin —0.74 1667 1439 17 5 490 92 00100 200
88 Radiatin -0.28 1058 794 12 3 368 53 16000 —-0.20
89 Simalikalactone D -0.78 1543 1314 16 5 452 84 00010 300
90 Taxodione —-153 910 865 10 3 384 49 30000 —-0.48
91 Taxodone -118 910 865 10 3 384 49 06000 022
92 Tripdiolide -0.76 1303 1243 14 7 416 68 00042 238
93 Triptolide —0.47 1275 1176 13 7 415 65 00017 277
94 Triptonide -0.61 1275 1176 13 7 415 65 00001 400
95 Tulipalin -0.21 229 133 2 1 109 5 160000 —-1.20
96 Tulipinolide —0.04 7.00 578 8 2 359 34 04600 034
97 Vernodalin —0.60 1058 824 11 3 426 51 18000 —-0.26
98 Vernolepin -0.33 846 717 9 3 333 41 17000 -0.23
99 Vernolide 001 1035 7.99 11 4 397 50 20000 —-0.30

100 Vernomenin -0.62 854 723 9 3 343 41 200000 —1.30

101 Vernomygdin -0.22 103 7.83 11 4 402 49 15000 -0.18

102 Xerantholide —-0.40 757 604 9 3 341 34 15030 -0.18

Definition of the descriptors were giveniables 2 and 3

3. Results and discussion classify the anticancer values based on the same subset of

descriptors. For the purposes of modeling, a value of 1, 2, 3

3.1. Results of MLR and 4 was assigned to compounds with low, moderate, high,

higher anticancer activities, respectively.

More than 40 non-empirical molecular descriptors, which
encode the essential structural features of the molecules, were.2. PNNSs structure optimization
calculated for each compound. The full list of the descrip-
tors calculated is given iTable 2 Forward stepwise re- The mostimportant parameter that needs to be determined
gression routine was used to develop the linear model for to obtain an optimal PNNs is the spread parametgof the
the prediction of log(1/EBy) using calculated structural de- random variables. The selection of this value is crucial be-
scriptors. The best linear model contains seven molecularcause it determines the shape of the Gaussian function. A
descriptors. Of them, one is quantum chemical, one is elec-large radius possesses a smooth shape and has the advantage
trochemical and five are topological descriptors. The best of interpolation, and a small radius leads to a sharp shape
seven-descriptor correlation model was shown in detail in and reduces the overlap between adjacent sarfilgsBut
Table 3 This model produced a correlation coefficient of too small a spread cannot generalize well, because unknown
0.773 for the compounds. samples only lie in the region that Gaussian function enclos-

FromTable 3 it can be seen that there is no simple linear ing can be generalized. To optimize the radius, 13 samples
correlation between the anticancer of medicinal plants and thewere used as a cross-validation set. A trial and error method
input parameters. Therefore, LDA and PNNs were applied to was used to find the best radius. The absolute error (AE) was
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Fig. 1. Structures of 102 active compounds.
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Fig. 1. (Continued.
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used as the error function, and it is computed according to radius is shown irig. 3. FromFig. 3, the optimal radius was
the following: found as 1.30.

AE = sum(abs{; — o; 3
(@bsd; — 1) B} 3.3 Results of PNNs and LDA

whered; is the desired output in the cross-validation set and

0; the actual output. From the above discussion, the radius of hidden layer
To obtain the optimal radius, the neural networks with nodes was fixed to 1.30. The predicted results of the opti-

different radii were trained, the spread varying from 1.00 to mal neural network were shown fable 4 The number of

1.45. The AE was calculated on different radii, according to compounds which were misclassified in the training set, the

the generalization ability on the cross-validation set in order cross-validation set, and the test set are 0, 1, and 1, respec-

to determine the optimal radius. The curve of AE versus the tively, and the corresponding accuracy are 100, 92.31, and
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Output layer

Input layer

Fig. 2. Structure of probabilistic neural networks.

Table 2

Full list of the descriptors calculated in this study

Descriptor

Descriptor

Total energy
Binding energy
Isolated atomic energy
Electronic energy
Core-core interaction
Heat of formation
Dipole

Surface area
Volume

Hydration energy
logp

Refractivity
Polarizability
Molecular weight
Homo energy level
Lumo energy level
ChiO index

Chil index

Chi2 index

Chi3 index

Chi4 index

Number of branches
Number of rings

Wiener index

Information wiener

Distance equality mean
Distance equality total
Polarity

Wiener index on distance code
Modified randic index

First zagreb index
Second zagreb index
Balanba

Dimension index

Number of C atoms

Number of O atoms
Number of N atoms
Number of single bonds
Number of double bonds
Number of triple bonds
Number of aromatic bonds

90.91%. InTable 4 we can remark that the misclassifica-

tion of nos. 84 and 96 are relatively important. These two

114 " n
104
% 9 n n

8

74 [ ] n n 1
T T T T T T T T T T T
1.0 1.1 1.2 1.3 1.4 1.5

spread

Fig. 3. The spread vs. AE error on cross-validation set.

After the establishment of PNNs model, LDA was used to
build another classification model to compare the results with
that obtained by PNNs. LDA was performed using the SPSS
statistical softwar§2?2]. In this work, the prior probabilities
were computed from group size. The predicted accuracy for
the training set, the cross-validation set, and the test set was
71.8, 92.3, and 54.5%, respectively. By comparison of the
results obtained by PNNs and LDA, it could be seen that the
results obtained by PNNs were better than that obtained by
LDA.

3.4. Discussion of the descriptors

By interpreting of the descriptors used in this work, it
is possible to gain some insight into factors that are likely
to govern the anticancer activity of the active compounds
in medicinal plants. (1) The standardized regression coef-
ficients reveal the significance of an individual descriptor
presented in the regression model. ObviouslyTable 3
the effect of number of rings (NoRI) on the activity of the
anticancer is more significant than that of the other descrip-
tors. FromTable 1 it can be seen that the compounds which
have 6 and 7 rings are all the highest anticancer agents, the

predicted results are not completely agreeing with the exper-ones which have 5 rings are almost the highest anticancer
iment results, but they lie on the borders (nos.: 84 (+/++); 96 agents. (2) The drugs take effect on organism by the molecu-

(+++/+4)). lar interactions between them. These interactions commonly
Table 3

MLR results on the correlation between input parameters and the activity values, logf)l/ED

Chemical meaning Descriptor Coefficient S.E. Standardized coefficients T-value
Intercept Constant —-1311 Q722 —-1815
Lumo energy level ELomo 0.333 Q280 Q093 1190
Chi3 index Chi3 —0.844 Q0302 —2.017 —2.798
Chi4 index Chi4 —-0.577 Q265 —1.243 —2.175
Number of branches NrBR —4.228E-02 0093 —.093 —0.453
Number of rings NrRI o753 Q205 Q760 3683
Distance equality mean DIEM .828 Q306 Q174 1074
Polarity Pola @32 Q049 3356 4706
R (correlation coefficient) a73

F-value

19665
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Table 4
Predicting results of training set, cross-validation set and test set by PNNs model
No. Class Predicted No. Class Predicted No. Class Predicted
1 ++ ++ 35 ++++ ++++ 69 ++ ++
2 ++ ++ 36 +++ +++ 70 ++ ++
3 ++ ++ 37 +++ +++ 71 ++ ++
4b +++ +++ 38 ++++ ++++ 72 ++++ ++++
52 ++++ ++++ 39 + + 73 ++ ++
6 ++++ ++++ 40 ++++ ++++ 74 + +
7 ++++ ++++ 4P ++ ++ 75 ++ ++
8 + + 42 4+ 4 78 ++ ++
9 ++ ++ 43 +++ +++ 77 ++++ ++++
10 + + 44 4+ 4 78 ++ ++
11 ++ ++ 45 ++ ++ 79 ++ ++
120 + + 46 ++ ++ 80 F++ 4
13 ++ ++ 47 +++ +++ 81 +++ +++
142 ++ ++ 48 ++ ++ 82 ++ ++
15 ++++ ++++ 49 +++ +++ 83 ++ ++
16 + + 5¢ 4+ 4 84 + ++
17 ++++ ++++ 51 +++ +++ 85 ++ ++
18 ++++ ++++ 59 ++ ++ 86 ++++ ++++
19 ++++ ++++ 53 ++ ++ 87 ++++ ++++
20° ++++ ++++ 54 ++ ++ 88 ++ ++
21 +++ +++ 55 + + 89 ++++ ++++
22 ++ ++ 56 +++ +++ 90 ++ ++
232 + + 57 +++ +++ 91 +++ +++
24 ++ ++ 58 +++ +++ )] ++++ ++++
25 ++ ++ 58 + + 93 ++++ ++++
26 +++ +++ 60 ++ ++ 94 ++++ ++++
27 ++++ ++++ 61 +++ +++ 95 + +
28 ++++ ++++ 62 ++ ++ 96 +++ ++
29 ++++ ++++ 63 ++ ++ 97 ++ ++
30 ++++ ++++ 64 ++ ++ 98 ++ ++
31 ++++ ++++ 65 +++ +++ 99 ++ ++
322 ++++ ++++ 66 ++ ++ 100 + +
33 +++ +++ 67 + + 101 ++ ++
34 ++++ ++++ 68 +++ +++ 102 ++ ++
a Test set.

b Cross-validation set.

include the bond of charge transfer, H-bond and dispersion4. Conclusion

interaction[23]. ELuymo is the energy of the lowest unoc-

cupied orbital and describes the electrophilicity ability of a A multiple linear regression study was conducted on
molecule and also the ability of a molecule to accept elec- 102 diverse active compounds extracted from medicinal
trons. According to frontier molecule orbital (FMO) theory, plants. More than 40 descriptors were calculated for each
frontier orbital energies control chemical reactivily.umo molecule. The best set of calculated descriptors was selected
can be considered as a measure of a compound’s susceptby factor correlation analysis and forward stepwise re-
bility to nucleophilic attack24]. The positive coefficient of  gression. Probabilistic neural networks and linear discrim-
ELumo in MLR model shows that increasing the energy of inant analysis were then applied to classify the anticancer
LUMO causes the anticancer activity increase in this work. values based on the same subset of descriptors. The op-
(3) The positive coefficient of polarity (Pola) also shows timization of PNNs structure is easier and faster com-
that increasing the polarity of molecule results in the anti- pared with back-propagation (BP) neural networks, because
cancer activity increases, it is probably due to the fact that there is only one adjustable parameter. The predictive
the molecule with high polarity can easily accommodate its results of PNNs are consistent with the experimental data
charge when it reacts to other molecule, consequently, resultsand better than that obtained by LDA. Some conclusions
in the high anticancer activity. (4) Meanwhile, the negative re- were drawn to give insight into the local molecular fea-
lationship between anticancer activity and Chi3 index (Chi3), tures that determine the anticancer activity of these com-
Chi4 index (Chi4) and number of branches (NoBR) reveals pounds. Therefore the model developed in this paper is a
that increasing these parameters of molecule decreases thgood and simple approach for predicting the expected an-
activity. ticancer classification of molecules and is very helpful to
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